

K25P 1897

Reg. No. :

Name :

II Semester M.Sc. Degree (C.B.C.S.S. – O.B.E. – Reg./Supple./Imp.) Examination, April 2025 (2023 and 2024 Admissions) MATHEMATICS MSMAT02C06/MSMAF02C06 : Advanced Abstract Algebra

Time : 3 Hours

Max. Marks : 80

60 - CONCOLOR - A

Answer any five questions. Each question carries 4 marks.

- 1. Give an example of a principal ideal domain. Justify your claim.
- 2. Find all the units in $\mathbb{Z}\left[\sqrt{-5}\right]$.
- 3. Prove that $\sqrt{\sqrt[3]{2}-i}$ is an algebraic number.
- 4. If α and β are constructible real numbers, prove that $\alpha\beta$ is also constructible.
- 5. Find the degree and a basis for the extension $\mathbb{Q}(\sqrt{2},\sqrt{3})$ of \mathbb{Q} .
- 6. If $f(x) \in \mathbb{Q}[x]$ is irreducible over \mathbb{Q} , prove that all zeros of f(x) have multiplicity one. (5×4=20)

PART – B

Answer **any three** questions. **Each** question carries **7** marks.

- 7. a) Prove that 5 is not an irreducible as an element in $\mathbb{Z}[i]$.
 - b) Give an example to show that an integral domain can contain irreducibles that are not prime.
- 8. State Kronecker's theorem. Find an extension of $\mathbb Q$ containing a zero of $x^4-5x^2+6.$

- 9. Prove that if F is a finite field, then for every positive integer n, there is an irreducible polynomial of degree n in F[x].
- 10. Prove that the field $\mathbb{Q}(\sqrt[3]{2})$ is not a splitting field over \mathbb{Q} .
- 11. Give an example of an irreducible polynomial over a field F, having a zero of multiplicity greater than one. (3×7=21)

PART – C

Answer any three questions. Each question carries 13 marks.

12.	a)	State and prove Gauss's Lemma.	8
	b)	Prove that every Euclidean domain is a PID.	5
13.	a) b)	If E is a finite extension field of a field F and K is a finite extension field of E, then prove that K is a finite extension of F. State and prove the Fundamental Theorem of Algebra.	8 5
14.	a)	Prove that trisecting an angle is impossible.	5
	b)	If F is a field of prime characteristic p with algebraic closure \overline{F} , then prove that $x^{p^n} - x$ has p^n distinct zeros in \overline{F} .	8
15.	a)	State the Conjugation Isomorphism Theorem.	3
	b)	Let E be a finite extension of F. Then prove that E is a splitting field over F if and only if for every field extension K over E and for every isomorphism σ that fixes all the extensions of F and maps E onto a subfield of K, σ is an automorphism of E.	10
16.	Sta	ate and prove primitive element theorem. (3×13=3	13 39)

K25P 1897